
Astronomy & Astrophysics manuscript no. Faerder2023_paper2 ©ESO 2024
January 3, 2024

A comparative study of resistivity models for simulations of
magnetic reconnection in the solar atmosphere.

II. Plasmoid formation
Ø. H. Færder1, 2, D. Nóbrega-Siverio3, 4, 1, 2 and M. Carlsson1, 2

1 Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029, Blindern, NO-0315 Oslo, Norway
e-mail: o.h.farder@astro.uio.no

2 Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029, Blindern, NO-0315 Oslo, Norway
3 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
4 Universidad de La Laguna, Dept. Astrofísica, E-38206 La Laguna, Tenerife, Spain

January 3, 2024

ABSTRACT

Context. Plasmoid-mediated reconnection plays a fundamental role in different solar atmospheric phenomena. Numerical reproduc-
tion of this process is therefore essential for developing robust solar models.
Aims. Our goal is to assess plasmoid-mediated reconnection across various numerical resistivity models in order to investigate how
plasmoid numbers and reconnection rates depend on the Lundquist number.
Methods. We used the Bifrost code to drive magnetic reconnection in a 2D coronal fan-spine topology, carrying out a parametric
study of several experiments with different numerical resolution and resistivity models. We employed three anomalous resistivity
models: (1) the original hyper-diffusion from Bifrost, (2) a resistivity proportional to current density, and (3) a resistivity quadratically
proportional to electron drift velocity. For comparisons, experiments with uniform resistivity were also run.
Results. Plasmoid-mediated reconnection is obtained in most of the experiments. With uniform resistivity, increasing the resolu-
tion reveals higher plasmoid frequency with weaker scaling to the Lundquist number, obtaining 7.9-12 plasmoids per minute for
S L ∈ [1.8 × 104, 2.6 × 105] with a scaling of S 0.210

L in the highest-resolution resistivity cases, transcending into Petschek reconnec-
tion in the high-S L limit (where the diffusive effects of the resistivity become small compared to the non-uniform viscosity) and
Sweet-Parker reconnection in the low-S L limit. Anomalous resistivity leads to similar results even with lower resolution. The drift-
velocity-dependent resistivity excellently reproduces Petschek reconnection for any Lundquist number, and similar results are seen
with resistivity proportional to current-density though with slightly lower reconnection rates and plasmoid numbers. Among the dif-
ferent resistivity models applied on the given numerical resolution, the hyper-diffusion model reproduced plasmoid characteristics in
closest resemblance to those obtained with uniform resistivity at a significantly higher resolution.

Key words. magnetohydrodynamics (MHD) – magnetic reconnection – methods: numerical – Sun: atmosphere – Sun: corona – Sun:
magnetic fields

1. Introduction

Magnetic reconnection is a promising candidate as a mechanism
for heating up the solar corona (e.g. Vaiana et al. 1973; Heyvaerts
& Priest 1984; Parker 1988). In addition, this process has been
shown to unleash some of the important phenomena in the so-
lar atmosphere that have been successfully modelled in numer-
ical experiments; these include Ellerman bombs (EBs) and ul-
traviolet (UV) bursts (e.g. Hansteen et al. 2017, 2019; Danilovic
2017; Nóbrega-Siverio et al. 2017; Peter et al. 2019; Ni et al.
2021), surges and coronal jets (e.g. Yokoyama & Shibata 1995,
1996; Nóbrega-Siverio et al. 2016; Wyper et al. 2016, 2017;
Nóbrega-Siverio & Moreno-Insertis 2022), as well as flares (e.g.
Yokoyama & Shibata 2001; Rempel et al. 2023).

This fundamental mechanism can either be modelled as
steady reconnection or non-steady, plasmoid-mediated recon-
nection. In the former case, one may analytically predict how
the reconnection rate, among other quantities, depends on the
Lundquist number S L ≡ LvAi/η, where L is the length of the
current sheet, vAi the inflow Alfvén speed, and η the resistivity
of the medium. In the slow-reconnection model developed by

Sweet (1958a,b) and Parker (1963), where a uniform diffusion
layer is assumed to cover the entire current sheet, the reconnec-
tion rate is predicted to be equal to S −1/2

L . In the fast reconnection
model by Petschek (1964), which assumes a Sweet-Parker diffu-
sion layer that covers only a limited segment of the current sheet,
the reconnection rate is found to be roughly equal to π/(8 ln S L).

Non-steady reconnection is characterised by resistive tear-
ing instability (see Furth et al. 1963), where magnetic islands, or
plasmoids, appear rapidly along the current sheet. Plasmoid in-
stability occurs when S L > 104 (Loureiro et al. 2007), where the
current sheet gets intrinsically unstable when its inverse aspect
ratio a/L —where a is the current-sheet width— passes below a
threshold value of S −1/3

L (Pucci & Velli 2014), which for coronal
Lundquist numbers is significantly higher than the Sweet-Parker
inverse aspect ratio of S −1/2

L . Therefore, Sweet-Parker reconnec-
tion is not expected to occur commonly in the upper solar at-
mosphere, given that any current sheet becomes unstable long
before obtaining a Sweet-Parker-like aspect ratio. The Sweet-
Parker reconnection rate, given a coronal Lundquist number, is
also far too slow to reproduce any flare (see Priest 2014, and ref-
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erences therein). Petschek-like reconnection rates have, on the
other hand, been successfully reproduced numerically when ap-
plying a local enhancement of the resistivity in the current sheet
(Yokoyama & Shibata 1994) or a very low, uniform resistivity
(Baty et al. 2009), even in the case of non-steady reconnection.

For plasmoid-mediated reconnection in an adiabatic
medium, the number of plasmoids has been analytically pre-
dicted to scale with the Lundquist number as S 0.375

L (Loureiro
et al. 2007). For the non-adiabatic case, Sen & Keppens (2022)
numerically found the maximum plasmoid number in a 2D
Harris current sheet to scale as S 0.223

L . In both cases, the number
of plasmoids increases slowly with the Lundquist number. Plas-
moids can therefore be expected to be quite numerous in coronal
current sheets due to the relatively high Lundquist number. The
presence of plasmoids in EBs, UV bursts, surges, and coronal
jets has been shown both observationally (e.g., Rouppe van der
Voort et al. 2017, 2023; Kumar et al. 2019) and numerically (Ni
et al. 2017; Nóbrega-Siverio et al. 2017; Hansteen et al. 2019;
Peter et al. 2019; Guo et al. 2020; Ni et al. 2022; Liu et al.
2023). Numerical studies of plasmoid-mediated reconnection
are therefore key to understanding any reconnection event that
may occur in the solar atmosphere.

In our previous paper (Færder et al. 2023, hereafter F2023),
we compared three different anomalous resistivity models by ap-
plying them on a 2D magnetohydrodynamics (MHD) simulation
with flux cancellation. There, we found that the models were all
capable of reproducing roughly the same large-scale results in
terms of current-sheet length and Poynting influx. In the present
paper, we analyse the details of the plasmoid instability of these
resistivity models during magnetic reconnection at the null-point
of a 2D fan-spine topology and compare the results to cases with
uniform resistivity. To this end, we perform a parametric study,
employing different resistivity magnitudes and resolutions. The
structure of the paper is as follows. Section 2 describes the code
and model equations used for our simulations, the different re-
sistivity models, and the setup for the numerical experiments. In
Section 3, we look into the results of the experiments by mea-
suring and comparing the plasmoid frequency, aspect ratio, and
reconnection rate of each simulation case. Finally, in Sect. 4 we
briefly discuss our results and summarise our conclusions.

2. Numerical model

2.1. Model equations

The simulations of this paper were performed with the 3D MHD
code Bifrost (Gudiksen et al. 2011). This code uses a sixth-order
operator for the spatial derivatives and a third-order scheme for
the time derivatives, allowing us to minimise the numerical dif-
fusion due to the discretisation of the equations. In particular, we
carried out different 2D simulations focusing on magnetic recon-
nection at coronal heights. We therefore included Joule heating,
viscous heating, and Spitzer conductivity, while excluding radia-
tive heating and cooling terms. Regarding the equation of state,
we assume a fully singly ionised ideal gas with a mean molecu-
lar weight of 0.616. In addition, gravity is neglected as the whole
computational domain lies in the corona.

2.2. Resistivity models

To study reconnection, we employed the three anomalous re-
sistivity models described in the F2023 paper, which are sum-
marised below.

2.2.1. Gudiksen-11 model

The Gudiksen-11 model (Gudiksen et al. 2011; Nordlund &
Galsgaard 1995) is the default resistivity model of Bifrost.
This hyper-diffusive model dynamically scales up the resistiv-
ity around gradients in the magnetic field B and velocity u and
can be written as a diagonal tensor, ¯̄ηG11, given by

ηG11,xx =
η3

2

[
Um,y∆yQy

(
∂Bz

∂y

)
+ Um,z∆zQz

(
∂By

∂z

)]
,

ηG11,yy =
η3

2

[
Um,z∆zQz

(
∂Bx

∂z

)
+ Um,x∆xQx

(
∂Bz

∂x

)]
,

ηG11,zz =
η3

2

[
Um,x∆xQx

(
∂By

∂x

)
+ Um,y∆yQy

(
∂Bx

∂y

)]
,

ηG11,xy = ηG11,yx = ηG11,yz = ηG11,zy = ηG11,xz = ηG11,zx = 0, (1)

where

Um,i ≡ ν1cf + ν2|ui| + η3∆xi|∇⊥ui|, (2)

Qi(g) ≡

∣∣∣∣ ∂2g
∂x2

i

∣∣∣∣∆x2
i

|g| + 1
qmax

∣∣∣∣ ∂2g
∂x2

i

∣∣∣∣∆x2
i

, (3)

and cf ≡

√
c2

s + v2
A, with cs and vA denoting the sound speed

and Alfvén speed, respectively. ν1, ν2, and η3 are free scaling
parameters. For this paper, we varied the input value of η3 while
using fixed ν1 = 0.03 and ν2 = 0.2, which should be kept as low
as possible as discussed in Sect. 3.1.5 of F2023.

2.2.2. Syntelis-19 model

The Syntelis-19 model (Syntelis et al. 2019) applies a scalar re-
sistivity ηS19 proportional to the current density J as follows:

ηS19 =

{
η0, |J| < Jcrit
η0 + η1|J|/Jcrit, |J| ≥ Jcrit

, (4)

where η0, η1, and Jcrit are free parameters. We used η0 = 3.78 ×
10−2 km2 s−1 and Jcrit = 5.00 × 10−4 G km−1 while varying the
input value of η1.

2.2.3. YS-94 model

In the YS-94 model (Yokoyama & Shibata 1994), the resistivity
ηYS94 scales with the electron drift velocity vd = |J|/(neqe), given
the electron density ne and elementary charge qe, as follows,

ηYS94 =

{
0, vd ≤ vc
min(α( vd

vc
− 1)2, ηmax), vd > vc

, (5)

where vc, α, and ηmax are free parameters. We used vc = 8.3 ×
10−6 km s−1 and ηmax = 2000 km2 s−1 while varying the input
value of α.

2.2.4. Uniform resistivity

In addition to the three aforementioned anomalous resistivity
models, we also used uniform resistivity for comparison pur-
poses,

ηU = η0, (6)

with various input values for η0.

Article number, page 2 of 13



Ø.H.Færder et al.: A Comparative Study of Resistivity Models... II. Plasmoid formation

2.3. Viscosity in Bifrost

While the resistivity ¯̄η in our simulations is given by one of the
four resistivity models mentioned above, the viscosity tensor ¯̄τ
is always given by Bifrost’s in-built description, namely

τi j =

 ρ∆xiUv,i
∂ui
∂xi
Qi

(
∂ui
∂xi

)
, i = j

ρ
[
∆x jUv, j

∂ui
∂x j
Q j

(
∂ui
∂x j

)
+ ∆xiUv,i

∂u j

∂xi
Qi

(
∂u j

∂xi

)]
, i , j,

(7)

where

Uv,i ≡ ν1cf + ν2|ui| + ν3∆xi|∇ui|, (8)

and ν3 is a free scaling parameter, which is set to 0.3 in our sim-
ulations.

2.4. Model setup

For the initial condition, we imposed a 2D fan-spine topology in
a similar fashion to Peter et al. (2019) and Nóbrega-Siverio &
Moreno-Insertis (2022). In particular, the horizontal and vertical
components of the magnetic field are respectively given by

Bx = B1e−kz sin(kx), (9)

Bz = B0 + B1e−kz cos(kx), (10)

where B1 = 10 G, k = π/16 Mm−1, and B0 = 3 G. The external
field B0 was set to resemble that of a typical quiet-Sun coronal
hole (Hofmeister et al. 2019). Panels (a) and (b) of Fig. 1 contain
the initial magnetic field topology and Bz(x, z = 0), respectively.
These panels show that the imposed field has a negative parasitic
polarity in a positive background, which leads to a null-point at
z = 6.13 Mm. The initial temperature and mass density were
uniformly set to T0 = 0.61 MK and ρ0 = 3 × 10−16 g cm−3 to
resemble typical values of the lower corona.

Concerning the boundary conditions, the side boundaries
were periodic. The top boundary was treated by an absorbing
layer on all MHD variables in order to ensure that any wave that
hits the boundary is not reflected. At the bottom boundary, an ab-
sorbing layer was applied on the mass density ρ, internal energy
density e, and the vertical velocity uz. For the horizontal veloc-
ity ux, a driving condition was imposed to move the inner spine
of our fan-spine topology with a velocity up to 1 km s−1. More
specifically, ux is a product of two components, similar to Peter
et al. (2019), defined as

ux(x, z = 0, t) = vd(t)v0(x). (11)

The spatial component v0(x) is given by

v0(x) =
(

1 + cos (π(x − Lx)/Lx))
2

)10

, (12)

where Lx = 16 Mm, which is the half-width of the computational
domain. The temporal component vd(t) is as follows

vd(t) = vp


sin (0.5πt/tr) t ∈ [0, tr]
1.0 t ∈ [tr, td − tr]
sin (0.5π(td − t)/tr) t ∈ [td − tr, td]

, (13)

with a peak velocity of vp = 1 km s−1, a ramping time of tr =
10 min, and a total driving time of td = 40 min. The spatial
and temporal components of this driving velocity are shown in
panels (c) and (d) of Fig. 1. The magnetic field at the bottom

Fig. 1: Model setup. Panel (a) shows the initial magnetic field
topology. Panel (b) displays the vertical component of this field
measured at z = 0. The inner spine of the magnetic field topology
is moved in positive x-direction with a driving velocity given by
a product of a spatial factor, plotted in panel (c), and a temporal
factor, plotted in panel (d).

boundary is line-tied to the flow. This was ensured by setting the
magnetic field in the ghost zones to be anti-symmetric around
the boundary value. The same anti-symmetric-around-boundary-
value condition was applied on ux in the ghost zones.

The numerical experiments span a 32×32 Mm2 physical do-
main and were run for 40 min. In particular, we performed 44
different simulations grouped as follows: (1) the 2k simulations,
that is, 24 cases with a resolution of 2048 × 2048 grid points,
using either uniform, Syntelis-19, YS-94, or Gudiksen-11 resis-
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Table 1: Simulations with their respective grid points, resistivity model, and resistivity peak values, ηp (km2 s−1).

Group Resolution Resistivity model ηp (km2 s−1)
S1-5 2048 × 2048 Syntelis-19 125, 87.3, 62.4, 42.7, 24.8
Y1-8 2048 × 2048 YS-94 155, 89.2., 71.7, 57.4, 43.9, 34.2, 26.7, 21.7
G1-7 2048 × 2048 Gudiksen-11 650, 309, 211, 131, 68.3, 36.1, 19.9
U1-4 2048 × 2048 Uniform (η = ηp) 75.6, 37.8, 18.9, 15.1

4kU1-9 4096 × 4096 Uniform (η = ηp) 75.6, 37.8, 18.9, 15.1, 7.56, 3.78, 1.89, 0.945, 0.473
8kU1-11 8192 × 8192 Uniform (η = ηp) 75.6, 37.8, 18.9, 11.3, 7.56, 3.78, 1.89, 0.945, 0.473, 0.378, 0.189

tivity with various input values for the scaling parameters; (2)
the 4k simulations, that is, nine experiments, each with a reso-
lution of 4096 × 4096 grid points, all using a uniform resistivity
with different values of η0; and (3) the 8k simulations, that is,
11 runs with an 8192 × 8192 resolution, also using a uniform
resistivity with different values of η0. The details of all the cases
are listed in Table 1; models are labelled with a letter, which de-
notes the chosen resistivity model, and a number that decreases
with increasing resistivity. The fourth column displays the peak
value ηp, the meaning of which is as follows. For the uniform-
resistivity cases, ηp is equal to the uniform value η0. For any of
the anomalous resistivity cases (S1-5, Y1-8, G1-7), ηp denotes
the maximum resistivity in the current sheet averaged over the
time period t ∈ [15, 35] min and is directly proportional to the
input value of the scaling parameter of the resistivity model ap-
plied in the given case.

In the 2k simulations, the scaling parameter for each resis-
tivity model varied from the minimum required for stability up
to 1-2 orders of magnitude above, or to a level that entirely pre-
vents plasmoid formation (resulting in a few cases of steady re-
connection). Similar variations were applied in the 4k and 8k
simulations. Notably, in these cases, the resistivity could be set
considerably lower than in the 2k simulations while maintain-
ing stability. On the other hand, if the resistivity terms are com-
pletely removed, the simulations become numerically unstable.
This fact indicates that the numerical diffusion due to the dis-
cretisation of the equations is negligible with respect to the ex-
plicit resistivity terms in the small regions with large gradients
or jumps in the variables, as in current sheets.

3. Results

3.1. Overview

In all simulations, the inner spine undergoes a positive x-
directional displacement due to the boundary driving velocity.
As a consequence, the null-point collapses, leading to a tilted
current sheet between the inner and outer spine. Following the
behaviour of the driver, the length of the current sheet increases
during the first 15 minutes of the simulation; it then remains
roughly constant for 20 minutes before finally decreasing during
the final 5 minutes of the simulations. At the current sheet, recon-
nection occurs continuously, significantly heating the plasma. As
a representative example, Fig. 2 shows the temperature of the
8kU6 case at t = 26.7 min with the magnetic field topology su-
perimposed. An animation of the full time evolution of the map
is available online. In all the simulations, the temperature profile
has roughly the same shape as shown in the image, albeit with
distinct peak temperatures, which range from 0.72 to 0.83 MK.

The differences between the simulations are more evident re-
garding other physical quantities such as mass density, which is
displayed in Fig. 3 at t = 26.7 min for six of the 8k cases (see also
associated animation). For instance, in case 8kU1, no evident

Fig. 2: Temperature and magnetic field topology taken from sim-
ulation case 8kU6. A movie of the time evolution of the map for
t ∈ [0, 40] min is available online.

plasmoids are seen, while plasmoids appear frequently in the
other cases, moving in either direction along the current sheet.
In some cases, several plasmoids merge together, a phenomenon
referred to as coalescence instability (Finn & Kaw 1977). In the
following, we analyse the characteristics of the reconnection in
all simulation cases listed in Table 1.

3.2. Data analysis method

3.2.1. The current sheet

As a first step of our analysis, we define our current sheet as the
region with a characteristic length LB ≡ (|J|/|B|)−1 ≤ 20 km, fil-
tering away any cells that belong to the spines and fan surfaces.
The LB ≤ 20 km threshold ensures that we consider elements
with a characteristic length larger than the lowest resolution we
have (∆x = ∆z = 15.6 km in the 2k cases). As an example,
the top panel of Fig. 4 contains a density map within the current
sheet in the 8kU6 simulation. The current-sheet axis is found
through a linear fit of the cells fulfilling the aforementioned con-
dition, and the current-sheet length, L, is then measured as the
distance between its extremes, labelled P0 and P1, as shown in
the figure. Having located the current-sheet axis, we define a co-
ordinate system centred at the middle of the current sheet, using
the distances along (d∥) and perpendicular to the current sheet
(d⊥); see Fig. 4 for coordinate axes.

To measure the current-sheet width, we projected the mag-
netic field onto the coordinate system of the current sheet. Its
component parallel to the sheet, B∥, has a Harris (1962) current
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Fig. 3: Mass density and magnetic field topology around the current sheet for six of the 8k simulation cases. A movie of the time
evolution of the maps for t ∈ [25, 30] min is available online to show how plasmoids and shocks originate along the current sheet.

sheet-like profile in its variation with d⊥, having nearly oppo-
sitely equal values on each side of the sheet. We therefore found
the current-sheet width a by fitting B∥ with a hyperbolic tangent.
Panel (c) of Fig. 4 depicts the method, showing B∥ (blue curve) at
d∥ = 0, and its fit Bfit (red curve) as functions of d⊥. The variation
of the width along the current sheet is given in Panel (b) (green
curve). The large peaks in this curve correspond to plasmoids, as
evidenced by the density variations along the current sheet (ρCS)
shown in black in the same panel. In subsequent sections, we use
the average width over the whole current sheet ā to estimate the
inverse aspect ratio ā/L (Sect. 3.4), as well as density variations
along the current sheet to measure the frequency of plasmoids
(Sect. 3.3).

To illustrate how the different anomalous resistivity models
work on the current sheet, Fig. 5 maps the resistivity ηCS along
the current sheet for three 2k simulation cases (S3, Y4, and G5),
which all reach a peak value of around 60 km2s−1. The resistivity
of S3 has a weaker variation along the current sheet than the
other two cases here, which is due to the fact that the resistivity
of the Syntelis-19 model is only linearly proportional to current
density. Therefore, one might expect the results of this resistivity
model to lie closer to those of uniform resistivity (for the same
resolution). Case G5, on the other hand, shows by far the most
variation in the resistivity along the sheet out of these three cases;
this is due to the more dynamic behaviour of the Gudiksen-11
model.

3.2.2. The diffusion region

The diffusion region of the reconnection site was defined as the
region around the current sheet delimited by |d∥| ≤ 0.50L and
|d⊥| ≤ 60 km, marked by a magenta dashed rectangle in the top
panel of Fig 4. We chose to set the diffusion region half-width
to 60 km for two reasons: (a) this threshold is slightly bigger
than the peak value of the sheet width a measured in the largest
plasmoids in our simulation cases, and (b) it ensures that the
magnetic Reynolds number Re ≡ LB|u|/η is always larger than
100 outside this region. Thus, this diffusion region marks the
area where the resistivity has a significant effect on the plasma.
The mean resistivity of the diffusion region, ηd, is used when
estimating the effective Lundquist number.

3.2.3. The inflow regions

The inflow regions of the reconnection site were defined as the
areas delimited by |d∥| ≤ 0.25L and 60 km ≤ |d⊥| ≤ 300 km,
marked by green dotted rectangles in the top panel of Fig 4. This
threshold ensures that the inflow regions lie just outside the dif-
fusion region (so Re > 100), and the Alfvén speed here is more

or less constant with distance from the sheet. The delimitation
of |d∥| ≤ 0.25L is to avoid the areas near the endpoints of the
current sheet where the Alfvén speed fluctuates more rapidly.

With this definition, the inflow Alfvén speed vAi was mea-
sured as the mean Alfvén speed within the green dotted rectan-
gles. Similarly, the inflow velocity vi was measured as the mean
absolute value of the velocity u⊥ perpendicular to the current
sheet within the inflow region. In panels (d) and (e) of Fig. 4, we
show both quantities as a function of d⊥. The black curve plots
the average values taken over |d∥| ≤ 0.25L, while the blue area
shows the ranges within one standard deviation. The estimated
(equilibrium) values for the inflow Alfvén speed and the inflow
velocity (at a given time and for a given case) is computed as the
mean value of these black curves for 0.06 Mm ≤ |d⊥| ≤ 0.3 Mm,
which is printed in the upper right corners of the panels.

Finally, the reconnection rate MAi in each simulation case
can be estimated as the mean of vi/vAi, which is analysed in
Sect. 3.5. Similarly, the effective Lundquist number S L is es-
timated as the mean of LvAi/ηd, which is a central part of the
analysis in the following sections. For both quantities, the mean
values are time averages over t ∈ [15, 35] min due to the fact that
the current-sheet length is approximately stable during that time
period.

3.3. Frequency of plasmoids along the current sheet

The frequency of plasmoids in the current sheet is studied here
through the variation in mass density ρCS measured along the
sheet (Fig. 4, panel b), which, for our case, was found to be
easier than detecting null-points following the method described
by Huang & Bhattacharjee (2010). To demonstrate this, ρCS is
mapped against d∥ and time in Fig. 6 for (top panels) the same six
8k simulation cases as in Fig. 3, along with six 2k cases with the
YS-94 resistivity (middle panels) and six with the Gudiksen-11
resistivity (bottom panels). Plasmoids are here identified as dark
red stripes tilted either upwards to the left or to the right, depend-
ing on which way the plasmoids move along the current sheet. In
agreement with the movie of Fig. 3, no plasmoids appear in case
8kU1. On the other hand, plasmoids appear frequently in cases
8kU4, 8kU6, and 8kU8. In case 8kU4, a roughly equal number
of plasmoids move upwards to the left along the current sheet as
those moving downward to the right, while in cases 8kU6 and
8kU8, the majority move in the latter direction. In cases 8kU10
and 8kU11, the dark stripes are very thin and barely visible,
which indicates that most of the plasmoids have diminished and
in such a way that they are only visible as outward-propagating
shocks, which is also seen in the movie. These cases are not
perfectly shock-mediated, as plasmoids still occur (though the
larger plasmoids occur only rarely here), but they are signif-
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Fig. 4: Characteristics of the current sheet (case 8kU6). Panel
(a): Mass density ρ in the current sheet, mapped for LB ≤ 20
km. The dashed line with endpoints P0 to P1 marks the current
sheet, with coordinate axes for d∥ and d⊥ plotted in. Diffusion
and inflow regions are delimited by magenta and green rectan-
gles, respectively. Panel (b): Average density ρCS (black curve)
and width a (green curve) of the current sheet. Panel (c): Parallel
component of magnetic field, B∥ (blue), across the current sheet
and the best-fit (red) curve used to estimate a at d∥ = 0. Pan-
els (d) and (e): Alfven velocity vA (d) and perpendicular velocity
u⊥ (e) across the current sheet. Blue area maps the ranges of all
values for |d∥| ≤ 0.25L, and black curve plots the average. Esti-
mated inflow region mean values are printed in top right corner.

Fig. 5: Evolution of the resistivity ηCS along the current sheet
for the S3, Y4, and G5 models. The three cases shown are 2k
simulations with anomalous resistivity with ηp = 60 km2 s−1.

icantly closer to the shock-mediated regime than cases 8kU4-
9. Therefore, the 8k cases seemingly cover three different types
of reconnection: steady (Sweet-Parker-like), plasmoid-mediated,
and (nearly) shock-mediated (Petschek-like) reconnection. In all
8k cases, the current-sheet length, as measured in the figure as
the width of the coloured region, lies roughly around 2 Mm.
The corresponding maps for the 4k cases (not shown in the fig-
ure) appear very similar to the 8k cases, though with a slightly
shorter current-sheet length. Similar plasmoid patterns are also
found in the 2k uniform resistivity cases for a narrower range of
Lundquist numbers.

Among the YS-94 resistivity cases (see Fig. 6, middle row),
the number of plasmoids (as seen as the dark stripes in the maps)
clearly increases from Y3 to Y5. The plasmoids are more diffi-
cult to detect by eye in cases Y6-8, but a closer look reveals a
significant number of very thin stripes. Hence, the plasmoids as
reproduced with the YS-94 model seem to diminish in size (but
not necessarily in number) as the resistivity gets sufficiently low.
This indicates that reconnection reproduced with this resistiv-
ity model may approach steady Petschek reconnection —which
is characterised by shocks instead of plasmoids— as the resis-
tivity decreases. In all of the Gudiksen-11 cases, the plasmoids
are relatively large in size, and are clearly more numerous in the
lower-resistivity cases (especially in G5-7) than in the higher-
resistivity cases. Among the Syntelis-19 cases, which are not
shown in the figure, a minor decrease in plasmoid size is seen
from cases S4 to S5, similar to that of the YS-94 cases, but of a
lesser degree. All the 2k cases have a shorter current sheet than
the 8k (and 4k) cases, which is due to a higher numerical dif-
fusion that sets a stricter limit on the current-sheet length. The
current-sheet length in the Gudiksen-11 cases increases as the
resistivity decreases, in agreement with the discussion in Sect.
3.1.5 of F2023 on how current-sheet length depends on the scal-
ing of the anomalous resistivity models. A similar but weaker
scaling between current-sheet length and resistivity is found in
the YS-94 and Syntelis-19 cases.

In order to measure the frequency of plasmoids for each sim-
ulation case, we picked specific locations along the current sheet
where we measure the density as a function of time. These lo-
cations are marked with dashed vertical lines in each panel of
Fig. 6. For most of the cases, plasmoids move in either direc-
tion, and so we picked two locations for measuring the density
curves. These locations were picked in such a way that each
plasmoid passes through one of the locations, but not both. Plas-
moids passing through one of those points are then detected as
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Fig. 6: Evolution of mass density ρCS along the current sheet over time for selected simulation cases. Dashed lines mark the locations
where a peak detection algorithm was used to count the number of plasmoids occurring per time.

spikes in the density curves. Hence, the total number of plas-
moids generated along the current sheet is given by the total
number of spikes in the density curves. In the shock-mediated
cases 8kU10-11 and Y6-8, the shocks are also seen as spikes in
these curves.

The frequency of plasmoids for the different simulation cases
—measured as the total number of plasmoids found in each case
in the time interval t ∈ [15, 35] min divided by 20 min— is plot-
ted against Lundquist number in Fig. 7. The results are grouped
into different panels by resistivity model and resolution. For a
certain range of Lundquist number within each group of cases,
the plasmoid frequency increases roughly with Lundquist num-
ber by a power law S p

L, and we used curve fitting to find the best-
fitting value of p, and the best-fit curves are plotted as dashed
lines. For the shock-mediated cases, we use the term ‘shock fre-
quency’ instead of ‘plasmoid frequency’, as the majority of the
spikes found in the density curves in those cases are seen only as
shocks propagating out of the reconnection site.

Among the uniform resistivity cases, as seen in the top pan-
els of Fig. 7, cases U1, 4kU1-2, and 8kU1-2 follow steady re-
connection, and therefore no plasmoids occur, as indicated by
their label placed to the left of the vertical blue line in each
panel. The other cases are plasmoid-mediated or shock-mediated
(8kU10 and 8kU11). As for the 2k cases, plasmoid-mediated re-
connection is reproduced only for a narrow range of Lundquist
numbers given by 3.5 ≤ log S L ≤ 4.0, below which steady re-
connection occurs, and above which numerical instability oc-

curs. Within the plasmoid-mediated regime, given by cases U2-
U4, the plasmoid frequency ranges from 2.0 to 4.7 plasmoids
per minute, with a scaling with Lundquist number given by
S 0.811

L , which is much stronger than the S 0.375
L scaling found

by Loureiro et al. (2007) for an adiabatic medium. Regarding
the plasmoid-mediated 4k cases (4kU3-9), the plasmoid number
ranges from 4.5 to 11 plasmoids per minute for Lundquist num-
bers of 3.9 ≤ log S L ≤ 5.6 with a scaling of S 0.240

L , which is
weaker than the above-mentioned adiabatic scaling, and is rela-
tively close to the S 0.223

L scaling found in the non-adiabatic cases
of Sen & Keppens (2022). Regarding the 8k cases, the plas-
moid frequency ranges from 6.9 to 12 plasmoids per minute for
Lundquist numbers of 4.2 ≤ log S L ≤ 5.4 with scaling of S 0.210

L ,
which is even weaker than the scaling of the plasmoid-mediated
4k cases and is even closer to the scaling of Sen & Keppens
(2022). In the shock-mediated cases 8kU10 and 8kU11, the mea-
sured frequency of shocks is lower than the plasmoid frequen-
cies of 8kU7-9. These two cases fit well to the (dotted) line for
the S 0.375

L scaling, indicating that the frequency of shocks gen-
erated in this type of (Petschek-like) reconnection scales adia-
batically with Lundquist number. Case 8kU3 is seemingly in an
intermediate state between the steady-reconnection regime and
the plasmoid-mediated regime, and case 8kU9 is in an interme-
diate state between the plasmoid-mediated and shock-mediated
regimes. By comparing the results for uniform resistivity with
the three different resolutions, we see that the plasmoid fre-
quency tends to converge towards higher values with a weaker
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Fig. 7: Plasmoid frequency, measured as the number of plasmoids generated along the current sheet per minute, plotted against
Lundquist number S L for each simulation case. Results are displayed for cases with uniform resistivity (top panels, with 2k, 4k, and
8k cases in separate panels) and anomalous resistivity (bottom panels, with Syntelis-19, YS-94, and Gudiksen-11 cases in separate
panels). For cases within a certain range of Lundquist numbers, the plasmoid frequency scales roughly with Lundquist number by
a power law S p

L, and best-fit curves for these cases are plotted as dashed lines in each panel. The curve for the adiabatic power law
S 0.375

L is plotted as a dotted line for the cases where a nearly adiabatic scaling between plasmoid number and Lundquist number
occur. A vertical line marks the Lundquist number below which steady reconnection occurs and above which plasmoid-mediated
reconnection occurs. Cases U1, 4kU1-2, 8kU1-2, S1, and Y1 have no plamsoids, as indicated by the label placed inside the steady-
reconnection regime.

scaling with Lundquist number as the resolution is increased.
The difference is smaller between the 4k and 8k cases than be-
tween the 2k and 4k cases.

Among the 2k cases with the Syntelis-19 resistivity model
(bottom left panel), steady reconnection occurs for log S L < 3.4
(case S1). For 3.4 ≤ log S L ≤ 4.5 (cases S2-5), the plasmoid
frequency ranges from 0.8 to 3.2 plasmoids per minute with a
scaling of S 0.641

L , a significantly stronger scaling than the adi-
abatic one, though weaker than the 2k cases with uniform re-
sistivity (for higher Lundquist number, numerical instability oc-
curs). Among the YS-94 cases (bottom centre panel), Y1 has
steady reconnection, and in cases Y2-8, the plasmoid frequency
(or shock frequency for Y6-8) ranges from 1.1 to 5.0 plasmoids
(or shocks) per minute for 3.6 ≤ log S L ≤ 5.2 with a scaling of
S 0.408

L . With the (dotted) line for adiabatic scaling S 0.375
L added

to the panel, we see that the YS-94 resistivity model is capable
of reproducing a nearly adiabatic scaling between plasmoid (or
shock) frequency and Lundquist number. As for the Gudiksen-
11 cases (bottom right panel), the plasmoid frequency ranges
from 4.2 to 7.6 plasmoids per minute for 2.6 ≤ log S L ≤ 4.3
with a scaling of S 0.142

L . Therefore, with the 2k resolution, the
Gudiksen-11 model reproduces the highest plasmoid frequency
with the weakest scaling to Lundquist number. Moreover, the

Gudiksen-11 cases are the only 2k cases where plasmoid fre-
quency is found to scale more weakly with Lundquist number
than the adiabatic scaling, and is closer to the scaling of Sen &
Keppens (2022) than the other 2k cases.

The key findings of this plasmoid analysis are as follows:
we observe that with uniform resistivity and a sufficiently high
resolution (4k and 8k cases), the dependency between plas-
moid formation and Lundquist number may be divided into three
regimes: (1) a steady-reconnection regime, for Lundquist num-
bers lower than 104; (2) a plasmoid-mediated regime with a
subadiabatic scaling between plasmoid number and Lundquist
number similar to that of Sen & Keppens (2022) for Lundquist
numbers between roughly 104 and 4 × 105; and (3) a shock-
mediated regime for Lundquist numbers above roughly 4 × 105,
where the frequency of shocks follows an adiabatic scaling with
Lundquist number similar to that predicted by Loureiro et al.
(2007). With uniform resistivity, very high resolution (as in our
8k cases, ∆x = ∆z = 3.9 km) is needed to obtain numerically
stable simulations with a Lundquist number high enough to re-
produce the latter, shock-mediated regime.

For lower resolutions (as in our 2k cases, ∆x = ∆z = 15.6
km), uniform resistivity is not a suitable resistivity model for
studying plasmoid formation, as plasmoid-mediated reconnec-
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tion is reproduced only within a narrow range of Lundquist
numbers (between 3 × 103 and 104) without breaking numeri-
cal stability along the current sheet. Within this range, the plas-
moid number increases rapidly with Lundquist number. The
Syntelis-19 resistivity model allows numerically stable simula-
tions with plasmoid-mediated reconnection for a slightly wider
range, but still with a significantly strong scaling between plas-
moid number and Lundquist number. The YS-94 model is ca-
pable of reproducing plasmoid- or shock-mediated reconnection
for a relatively wide range of Lundquist numbers and shows an
almost perfectly adiabatic scaling between plasmoid or shock
frequency and Lundquist number. The Gudiksen-11 model is
capable of reproducing plasmoid frequencies closer to those
seen in the high-resolution high-S L cases (G7 having ∼ 7.6
plasmoids per minute, and the 8kU4-8 having about 7-12 plas-
moids per minute), and the scaling between plasmoid number
and Lundquist number is weaker than in the adiabatic case,
which is in fair agreement with the scaling seen in our higher-
resolution cases as well as with the scaling found by Sen & Kep-
pens (2022).

3.4. Aspect ratio of the current sheet

In all of our simulation cases, the inverse aspect ratio ā/L is ini-
tially infinitely high, as the current sheet starts at zero length.
During the first 15 minutes of the simulation, the aspect ratio de-
creases rapidly as the current sheet increases in length, reaches
an equilibrium value of between 0.005 and 0.05 depending on
the simulation case, and remains roughly constant throughout
the reconnection phase. For the first 5-10 minutes of each sim-
ulation, ā/L is higher than the ideal tearing instability threshold
value S −1/3

L , and the current sheet is stable during this phase (i.e.
no plasmoid instability occurs). Shortly after ā/L passes below
S −1/3

L , the current sheet becomes unstable in most of the simula-
tion cases, and plasmoids therefore rapidly appear. However, in
a few cases (S1, Y1, U1, 4kU1-2, and 8kU1-2, as discussed be-
low) where the Lundquist number is sufficiently low (< 104), the
current sheet remains stable even when ā/L < S −1/3

L , allowing
steady reconnection to occur. Amongst those cases, in the cases
with uniform resistivity (U1, 4kU1-2, and 8kU1-2), ā/L reaches
an equilibrium value of close to S −1/2

L , indicating the occurrence
of Sweet-Parker reconnection.

In Fig. 8, we show the equilibrium value that ā/L reaches in
each case, which is computed as an average taken over the time
interval t ∈ [15, 35] min. The Sweet-Parker value aSP/L ≡ S −1/2

L
is plotted as a dashed line, and the ideal tearing instability thresh-
old athr/L ≡ S −1/3

L as a dotted line. All the uniform resistiv-
ity cases (top panels) are scattered in a similar manner. The in-
verse aspect ratio clearly drops below the ideal tearing instabil-
ity threshold, allowing plasmoids to appear rapidly in all cases
except for those with a sufficiently low Lundquist number to
maintain steady reconnection. Those steady-reconnection cases,
namely U1, 4kU1, 4kU2, 8kU1, and 8kU2, all lie just below the
Sweet-Parker value in the figure, confirming that these cases in-
deed follow Sweet-Parker reconnection. 8kU3 also lies just be-
low this line, and U2 on this line, which is in fair agreement with
the fact that they lie close to the threshold between the steady
regime and the plasmoid-mediated regime. All of the cases that
lie within the Sweet-Parker regime are scattered approximately
along the Sweet-Parker line, confirming that the inverse aspect
ratio is indeed proportional to S −1/2

L for Sweet-Parker reconnec-
tion. In the plamsoid-mediated cases (U2-3, 4kU3-9, 8kU4-11),
the size of the plasmoids puts a limit on how small the mean

thickness ā of the current sheet can be, and therefore the inverse
aspect ratio seems to be almost independent of Lundquist num-
ber for those cases. For the nearly shock-mediated cases, 8kU10
and 8kU11, we measured a significantly lower inverse aspect
ratio than in the more heavily plasmoid-mediated cases, as the
plasmoids here are diminished in size.

As for the anomalous resistivity cases seen in Fig. 8, the in-
verse aspect ratio decreases slowly with increasing Lundquist
number because of a slowly increasing current-sheet length. In
all of the Syntelis-19 cases (bottom left panel), the inverse as-
pect ratio decreases significantly below the ideal tearing insta-
bility threshold, which is in close agreement with the fact that
plasmoids appear in all cases except S1 (where the sufficiently
high resistivity enforces stability of the current sheet). The in-
verse aspect ratio of S1 is still significantly above the Sweet-
Parker value. Therefore, this steady-reconnection case is not
Sweet Parker-like, which is expected given that the resistivity
is non-uniform. Among the YS-94 cases (bottom centre panel),
Y1-5 have an inverse aspect ratio far below S −1/3

L , and cases
Y2-5 are clearly plasmoid-mediaded, as expected, while Y1 has
sufficiently high resistivity to maintain steady reconnection, still
with ā/L > S −1/2

L (therefore not a Sweet-Parker case). Regard-
ing cases Y6-8, which are also plasmoid-mediated, the inverse
aspect ratio drops only barely below S −1/3

L in Y6-7 and remains
slightly above S −1/3

L in Y8. This may indeed explain why the
plasmoids in these cases appear diminished in size, indicating a
convergence towards shock-mediated reconnection for increas-
ing Lundquist number. In all of the Gudiksen-11 cases (Fig. 8,
bottom right panel), ā/L drops far below the ideal tearing insta-
bility threshold, in good agreement with the fact that plasmoids
appear relatively large in size in all those cases (as seen in Fig. 6).

3.5. Reconnection rate

The reconnection rate MAi ≡ vi/vAi of each simulation case is
plotted against Lundquist number in Fig. 9. The Sweet-Parker
reconnection rate MSP ≡ S −1/2

L is plotted as a dashed line, and
the Petschek reconnection rate MPet ≡ π/8 ln S L as a dotted
curve. Among the uniform resistivity cases (top panels), the re-
connection rates of U1, 4kU1, and 8kU1 lie near to the values
predicted by the Sweet-Parker model, which is in good agree-
ment with the previously observed Sweet-Parker-like aspect ra-
tio and absence of plasmoids. These cases are therefore indeed in
the Sweet-Parker regime. The steady-reconnection cases 4kU2
and 8kU2 are also close enough to the Sweet-Parker line to
be characterised as Sweet-Parker reconnection. The plasmoid-
mediated cases U2-4, 4kU3-9, and 8kU3-9 lie approximately
along the same nearly horizontal line, meaning that the recon-
nection rate is almost independent of Lundquist number for those
cases. A similar change of dependency between reconnection
rate and Lundquist number from the Sweet-Parker regime to the
plasmoid-mediated regime is seen in the simulations of Bhat-
tacharjee et al. (2009). Cases 8kU10 and 8kU11 both have signif-
icantly higher reconnection rates, indeed close to that predicted
by the Petschek model, which is in agreement with the fact that
these cases are more shock-mediated. This is due to the fact that
the resistivity in these two cases is low enough that the non-
uniform viscosity term has a dominating effect on the dynamics
of the current sheet. A similar Petschek-like reconnection was
seen in the simulations by Baty et al. (2009), where a relatively
low uniform resistivity was also applied, and that behaviour was
mainly triggered by the non-linear viscosity.
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Fig. 8: Mean inverse aspect ratio averaged over t ∈ [15, 35] min, plotted against Lundquist number S L for each simulation case.
The dashed line marks the Sweet-Parker value aSP/L ≡ S −1/2

L , and the dotted line shows the ideal tearing instability threshold
athr/L ≡ S −1/3

L .

Among the Syntelis-19 cases (Fig. 9, bottom left panel), the
steady case S1 has a reconnection rate that is only slightly be-
low the Petschek value, indicating that the reconnection here is
nearly Petschek-like. The plasmoid-mediated cases S2 to S5 lie
further below the Petschek curve, though the scaling between re-
connection rate and Lundquist number is still similar to that of
the Petschek model. Furthermore, all of the YS-94 cases (bottom
centre panel) lie approximately along the Petschek curve, mean-
ing that their reconnection rates roughly agree with Petschek the-
ory, even though plasmoids are present in all of those cases ex-
cept for Y1. This agrees perfectly with what Yokoyama & Shi-
bata (1994) found in their 2D simulations of an emerging coro-
nal loop, namely that this anomalous resistivity model is capable
of reproducing a non-steady Petschek-like reconnection scheme.
Regarding the Gudiksen-11 cases (bottom right panel), only G1
lies below the Sweet-Parker line. This is in agreement with the
fact that the current sheet in this case also has a Sweet-Parker-
like aspect ratio, which indicates that non-steady Sweet-Parker
reconnection may be occurring here. G3-G5 all have reconnec-
tion rates that are slightly below the Petschek value (and G2
somewhere in between), while G6 and G7 have even lower re-
connection rates.

In summary, the reconnection rates obtained with the anoma-
lous resistivity models are in general higher than those obtained
with uniform resistivity. The YS-94 model is the only one to re-
produce reconnection rates that are approximately equal to the
Petschek values. The Gudiksen-11 model, on the other hand, is
capable of reproducing relatively high reconnection rates at the
same time as reproducing high plasmoid frequencies, as seen in

cases G1-5; these latter are the only cases that show reconnection
rates above 0.04 whilst also producing more than four plasmoids
per minute.

3.6. Temperature increase in the reconnection site

As a final step in our analysis of the reconnection process,
Fig. 10 displays the maximum temperature increase relative to
the initial temperature, max∆T/T0, for all simulation cases,
which is given by the maximum value of (T − T0)/T0 found in
the computational domain averaged over t ∈ [15, 35] min. This
maximum temperature increase lies roughly around 27%-30%
in the 8k cases, at about 25% in the 4k cases, and between 15%
and 22% in the 2k cases. This shows that the total heating of the
current sheet increases with resolution. The reason for this is that
the simulation cases with higher resolution obtain significantly
longer, though slightly narrower current sheets. Therefore, as the
total heating of the current sheet is equal to the heat input per vol-
ume integrated over its area, this observed correlation between
total heating and resolution is to be expected. Among the uni-
form resistivity cases, with the exception of 8kU10 and 8kU11,
the total heating of the current sheet seems to be almost indepen-
dent of Lundquist number. This is because the viscous heating
of the plasma in the reconnection site, which, predictably, be-
comes dominant for high Prandtl numbers (Rempel 2017), is in
our cases found to increase with Lundquist number in a way that
balances the corresponding decrease in Joule heating. The nearly
shock-mediated cases 8kU10 and 8kU11 have a lower heat input
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Fig. 9: Reconnection rate, averaged over t ∈ [15, 35] min, plotted against Lundquist number S L for each simulation case. The
dashed line marks the Sweet-Parker value MSP ≡ S −1/2

L , and the dotted line the Petschek value MPet ≡ π/8 ln S L.

Fig. 10: Maximum temperature increase relative to initial tem-
perature, averaged over t ∈ [15, 35] min, plotted against
Lundquist number S L for all simulation cases.

than the other 8k cases because of a significantly shorter and
thinner current sheet.

In all the anomalous resistivity cases, the total heating of
the plasma increases weakly with Lundquist number because
of the corresponding increase in current-sheet length, as seen in
Fig. 6. The scaling between total heating and Lundquist number
is strongest in the Gudiksen-11 cases, and G7 obtain a maximum

temperature increase of slightly above 20 %, reaching the highest
temperatures of the anomalous resistivity cases. Among the 2k
cases, only the uniform resistivity cases reach higher tempera-
tures, but only at a significantly lower Lundquist number. There-
fore, with the resolution of the 2k cases, the Gudiksen-11 resis-
tivity model is the most suitable for reproducing satisfactorily
high temperatures, that is, closer to those obtained in the higher
resolution cases, at relatively high Lundquist numbers (> 104).

4. Discussion

Here, we expand on our previous comparative study of resis-
tivity models (F2023) by performing numerical experiments
of plasmoid-mediated reconnection in a 2D coronal fan-spine
topology. We carried out a parametric study employing the same
three anomalous resistivity models as in F2023 as well as a
model with uniform resistivity. We varied the scaling parameters
and the numerical resolution and analysed how the characteris-
tics of the reconnection process depend on Lundquist number.

In all simulations, reconnection occurs along a tilted current
sheet in the corona, causing a temperature increase of 15%-30
%. The majority of the experiments show plasmoid-mediated re-
connection, regardless of the resistivity model used. Steady re-
connection is only found in cases where the resistivity of the
current sheet is high enough to prevent plasmoid instability. The
minimum Lundquist number required to reproduce plasmoid in-
stability lies around 2 × 103 in our lowest-resolution cases and
converges towards 104 as the resolution reaches sufficiently high
values, which is in good agreement with the findings of Loureiro
et al. (2007). The hyper-diffusive resistivity model reproduces
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plasmoid instability at significantly lower Lundquist numbers,
which is due to its dynamic variation in the resistivity along the
current sheet. We also see (in some cases with the drift velocity-
dependant resistivity) that the reconnection is shock-mediated
rather than plasmoid-mediated if the inverse aspect ratio ā/L of
the current sheet remains above or only slightly below S −1/3

L , in-
dicating that ā/L has to drop significantly below this threshold
in order for the current sheet to become intrinsically unstable, as
predicted by Pucci & Velli (2014).

The frequency of plasmoids generated along the current
sheet scales with the Lundquist number, following a power law
for a certain range of Lundquist numbers. With uniform resistiv-
ity, the plasmoid frequency converges towards higher values and
a weaker scaling with Lundquist number as the resolution in-
creases. The cases with the highest resolution, ∆x = ∆z = 3.9
km, reproduce a plasmoid frequency that ranges from 6.9 to
12 plasmoids per minute and scales as S 0.210

L for S L ∈ [1.8 ×
104, 2.6 × 105], which is close to the power law found by Sen &
Keppens (2022) for the maximum plasmoid number on a Harris
current sheet in a non-adiabatic medium. Our simulated plasma
is also non-adiabatic, which explains why we reproduce a scal-
ing law here that is similar to theirs rather than to those derived in
the adiabatic cases of Loureiro et al. (2007) and Huang & Bhat-
tacharjee (2010), where the plasmoid number was ∝ S 0.375

L in
the linear reconnection phase and ∝ S L in the non-linear phase.
For S L < 104, steady Sweet-Parker reconnection occurs that
is characterised by the absence of plasmoids, a Sweet-Parker-
like aspect ratio of the current sheet, and a reconnection rate
similar to that predicted by the Sweet-Parker model. For suffi-
ciently high Lundquist numbers (S L > 5 × 105), a rather shock-
mediated Petschek reconnection occurs, which is similar to what
was found by Baty et al. (2009), with a nearly adiabatic scaling
between shock frequency and Lundquist number and a reconnec-
tion rate close to the Petschek value. This happens because the
resistivity here is low enough to allow the non-uniform viscous
term to dominate.

Among our simulation cases with the lowest resolution,
∆x = ∆z = 15.6 km, plasmoid-mediated reconnection is re-
produced for only a narrow range of Lundquist numbers (S L ∈

[3 × 103, 104]) with uniform resistivity. The anomalous resistiv-
ity models help to increase this range. The drift-velocity-scaled
model (YS-94) used by Yokoyama & Shibata (1994) reproduces
Petschek reconnection for any Lundquist number (being steady
for S L < 103) with reconnection rates approximately equal to
π/(8 ln S L) and a nearly adiabatic scaling between plasmoid (or
shock) frequency and Lundquist number. The model with re-
sistivity proportional to current density (Syntelis-19) reproduces
similar results, but on a narrower range of Lundquist numbers,
with a lower plasmoid frequency that scales more closely with
Lundquist number and a reconnection rate that is slightly lower
than the Petschek value. The hyper-diffusive resistivity model
of Bifrost (Gudiksen-11) reproduces higher plasmoid frequen-
cies (4.2-7.6 plasmoids per minute) with a weaker scaling with
Lundquist number (∝ S 0.142

L ) than any of the other resistivity
models applied on the same resolution; indeed, it is the only re-
sistivity model that, for the given resolution, reproduces a plas-
moid frequency with a weaker scaling to Lundquist number than
the S 0.375

L scaling predicted for adiabatic reconnection (Loureiro
et al. 2007). This resistivity model therefore reproduces plas-
moid characteristics that more closely resemble those seen in
the higher-resolution cases. It is also the only resistivity model
that reproduces both relatively high reconnection rates (> 0.04)
and plasmoid frequencies (> 4 plasmoids per minute) at the

same time. Additionally, for significantly high Lundquist num-
bers (>104), the hyper-diffusive resistivity model of Bifrost re-
produces a higher total heating of the plasma than the other re-
sistivity models applied on the same resolution, reaching tem-
peratures closer to those of the higher-resolution cases. There-
fore, this model indeed proves to be suitable for simulating dy-
namic plasmoid-mediated reconnection, and is also applicable
for 3D models of the solar atmosphere without requiring ex-
tremely high resolution. Indeed, this model has been success-
fully used for simulations of flux emergence with plasmoid re-
connection leading to EBs and UV bursts (Hansteen et al. 2019)
as well as nanoflare-like events with synthesised line spectra de-
tectable for the upcoming MUSE mission (Robinson & Carlsson
2023).

The most important result of this comparative study is that,
out of the four resistivity models applied on the same reconnec-
tion experiment with the same numerical resolution, the plas-
moid characteristics produced with the hyper-diffusive model
most closely resemble those obtained with uniform resistivity
with significantly higher resolution. Additionally, by taking into
account scaling laws previously derived for spontaneous recon-
nection on Harris sheets (Loureiro et al. 2007; Bhattacharjee
et al. 2009; Huang & Bhattacharjee 2010; Sen & Keppens 2022),
we show that we are able to derive very similar scaling laws for a
more driven reconnection process. This indicates that such scal-
ing laws may apply on a wider range of reconnection processes,
allowing us to better understand more complex scenarios such
as reconnection driven by granular motion (Nóbrega-Siverio &
Moreno-Insertis 2022).

The complex behaviours of plasmoid instability may only
be fully understood through three-dimensional numerical stud-
ies; namely the turbulent splitting, kinking, and merging of plas-
moids seen in the coronal mass ejection simulation of Ye et al.
(2023), or the chaotic tearing-thermal instability leading to coro-
nal condensation similar to prominences and coronal rain blobs
simulated by Sen et al. (2023). Two-dimensional particle-in-cell
(PIC) simulations of waves in plasmoid-mediated reconnection
have provided new insights into the different natures of waves
inside and outside current sheets as an effect of the tearing in-
stability (Shahraki Pour & Hosseinpour 2022). High-resolution
2D MHD simulations with resistivity predicted from particle-
collision probabilities including radiative cooling and partially
ionised effects have provided detailed information on the en-
ergy balance in plasmoid reconnection in the chromosphere lead-
ing to EBs (Liu et al. 2023) and UV bursts (Ni et al. 2022).
Though MHD simulations with anomalous resistivity may lead
to a slightly more approximate representation of the reconnec-
tion process, this study proves that the hyper-diffusion model of
Bifrost is indeed helpful in numerically studying phenomena on
the Sun that would otherwise require a significantly higher reso-
lution to simulate with a low, Spitzer-like resistivity.
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